RESOLUTION 15-13

A RESOLUTION OF THE TOWN COUNCIL OF THE TOWN OF FORT MYERS BEACH, FLORIDA, ADOPTING THE TOWN OF FORT MYERS BEACH WATER FACILITIES MANAGEMENT PLAN; A COPY OF THE PLAN IS ATTACHED HERETO AND INCORPORATED HEREIN; PROVIDING AN EFFECTIVE DATE.

WHEREAS, the State of Florida provides low interest loans to municipalities for high-priority water quality needs through the State Revolving Fund ("SRF") Loan program administered by the Florida Department of Environmental Protection (the "FDEP"); and

WHEREAS, Town Council directed Staff to seek SRF loan funding for the Town's water distribution projects;

WHEREAS, The Town has submitted Pre-construction and Construction Requests for inclusion to FDEP for SRF funds; and

WHEREAS, pursuant to Chapter 62-503, Florida Administrative Code, completion of the SRF loan application requires formal adoption of a facilities planning document by Town Council to receive loan funding

WHEREAS, Tetra Tech Inc. in consultation with Town staff has developed the Town of Fort Myers Beach Water Facilities Plan ("The Plan") detailing proposed improvements, environmental effects and benefits; and financial feasibility of the plan.

WHEREAS, the Town has submitted the Plan to FDEP for review; and

WHEREAS, the Town Council desires to adopt the Plan and thereby establish a commitment to implementing the planning recommendations contained therein; and

WHEREAS, the Town Council finds that approval of the Plan is in the best interest of the Town.

NOW, THEREFORE, BE IT RESOLVED BY THE TOWN COUNCIL OF THE TOWN OF FORT MYERS BEACH, FLORIDA AS FOLLOWS:

Section 1. Recitals. The above recitals are true and correct and are incorporated herein by this reference.

Section 2. Approval of Plan. The Plan prepared by Tetra Tech, Inc. dated April 2015, subject to any changes directed by Town Council and as may be required by the FDEP and/or State Clearinghouse attached hereto as Exhibit "A" is approved.
Section 3. Authorization of Town Officials. The Town Manager and or his designee are authorized to take all actions necessary to implement the recommendations of the Plan and are authorized to execute any documents required and to take any such necessary actions to secure the SRF application.

Section 4 Effective Date. This resolution shall become effective immediately upon its adoption.

The foregoing Resolution was adopted by the Town Council upon a motion by Vice Mayor Andre and seconded by Council Member Mandel and upon being put to a vote, the result was as follows:

Anita Cereceda, Mayor aye Dan Andre, Vice Mayor aye
Rexann Hosafros aye Alan Mandel aye
Summer Stockton aye

DULLY PASSED AND ADOPTED THIS 15th day of JUNE, 2015.

Approved as to legal sufficiency: ATTEST:

By: By:

Gray, Robinson P.A.
Town Attorney Michelle Mayher
Town Clerk
Water Facilities Plan

#200-74765-15002
April 23, 2015

FOR

Town of Ft. Myers Beach
2523 Estero Blvd
Fort Myers Beach, FL

PREPARED BY

Tetra Tech
201 E Pine Street,
Suite 1000
Orlando, FL 32801

P (407) 839-3955
F (407) 839-3790
tetratech.com
TABLE OF CONTENTS

1.0 SUMMARY OF FINDINGS AND RECOMMENDATIONS ... 3

2.0 INTRODUCTION .. 4

 2.1 Background ... 4
 2.2 Need .. 6
 2.3 Scope of Study ... 6

3.0 ENVIRONMENTAL IMPACTS ... 7

 3.1 Description of Planning Area ... 7
 3.1.1 Planning/Service/Project Area .. 7
 3.1.2 Climate .. 7
 3.1.3 Topography and Drainage ... 7
 3.1.4 Geology, Soils, and Physiography .. 7
 3.1.5 Environmentally Sensitive Areas or Features 9
 3.1.6 Flood Plain ... 9

 3.2 Socio-economic Conditions ... 11
 3.2.1 Population .. 11
 3.2.2 Land Use and Development .. 11

 3.3 Water Distribution System .. 11
 3.3.1 Description of the Existing Water System 11
 3.3.2 Performance of Existing Water System 13
 3.3.3 Water Demand Projection ... 13
 3.3.4 Service Population and Finished Water Projections 13

 3.4 Managerial CapaTown .. 13
 3.4.1 Operation and Maintenance Program 13

4.0 DEVELOPMENT OF ALTERNATIVES .. 14

 4.1 General ... 14
 4.2 Potable Water Transmission System Improvement Options 14
 4.2.1 No Action ... 14
 4.2.2 Pipe Bursting Installation Method .. 14
 4.2.3 Directional Drill Installation Method 14
 4.2.4 Open Cut Installation Method ... 16

5.0 THE SELECTED PLAN ... 17

 5.1 Description of Proposed Facilities .. 17
5.1.1 Potable Water Transmission Main .. 17
5.1.2 Distribution System .. 17
5.2 Environmental Impacts of Proposed Facilities 17
5.3 Cost to Construct Facilities ... 17
5.4 Consistency with the Comprehensive plan 17

6.0 IMPLEMENTATION AND COMPLIANCE 18
6.1 Public Hearing/Dedicated Revenue Hearing 18
6.2 Regulatory Agency Review .. 18
6.3 Financial Planning ... 16
6.4 Implementation .. 18
6.5 Implementation Schedule ... 18
6.6 Compliance .. 18

LIST OF FIGURES

Figure 1. Town of Ft. Myers Beach Planning Area 5
Figure 2. Soil Survey Map for the Town of Ft. Myers Beach 8
Figure 3. Wetlands Map for the Town of Ft. Myers Beach 10
Figure 4. Land Use Map for the Town of Ft. Myers Beach 12
Figure 5. Project Location Map ... 12

APPENDICES

APPENDIX A Cost Information of the Selected Alternative 19
APPENDIX B Summary of Public/Dedicated Revenue Hearing (TO BE PROVIDED BY TOWN)............................. 21
APPENDIX C Capital Financing Plan (TO BE COMPLETED BY TOWN) ... 22
APPENDIX D User Rate System and Draft Rate Ordinance (TO BE COMPLETED AT A LATER DATE) 31
APPENDIX E Flood Insurance Rate Map 32
APPENDIX F Sanitary Survey Report 34
1.0 SUMMARY OF FINDINGS AND RECOMMENDATIONS

This facilities plan was prepared by Tetra Tech, Inc. to meet the requirements of the State Revolving Fund (SRF) loan funding for drinking water systems. The area considered in preparing this plan includes the Town of Fort Myers Beach (Town) located in Lee County. The planning period extends through the year 2045 and addresses the need of the planning area in the year 2015. The recommendations resulting from this study are consistent with both the Town's and the County's Local Comprehensive Plans.

Presently, the existing potable water distribution system is deemed inadequate. The average age of the water system in the Town is over 35 years and is in need of repair. There are several problems associated with the aging potable water distribution system. Currently, the Town has addressed low pressure and aging infrastructure problems within the system by upgrading deficient areas on a case by case basis. However, the current construction projects only address a small portion of the overall distribution system’s problems. Additionally, the system is deficient with regards to the current Fort Myers Beach Public Works Services (FMBPWS) Operations Manual standards and the Town’s Land Development Code. The Town’s fire protection system is also lacking in both fire hydrants and the recommended fire flow requirements.

The existing system includes approximately 81,000 linear feet of various size Asbestos Cement (AC) and Ductile Iron (DI) pipe and 27,500 linear feet of 2- and 3-inch galvanized steel distribution lines which need to be replaced. The improvements proposed involve upgrading the distribution system by installing new transmission and distribution mains in a “loop” system throughout several phases over the next 5 years. Per the 2010 US census, the permanent population in the Town is 6,277 residents with seasonal peak population reaching approximately 25,000 residents and visitors from December to April.

The distribution system is to be upgraded by installing new PVC pipe and lateral service connections to replace the outdated infrastructure. New fire hydrants will be installed to meet local spacing and fire flow requirements.

As outlined in this report the Town will install new 8-, 10- and 16-inch PVC water distribution mains in a “loop system” by open cut construction methods to replace the existing infrastructure. The project cost of the proposed facilities is estimated at approximately $26,700,000. The details of capital costs are shown in Appendix A.
2.0 INTRODUCTION

2.1 BACKGROUND

The Town of Fort Myers Beach is located along the west coast of Lee County, approximately 13 miles south of the Town of Fort Myers along the Gulf of Mexico. The Town was incorporated in 1995, following a referendum supported by the citizens of Estero Island for incorporation. Long before incorporation, Estero Island was inhabited by Calusa Indians (dating back to over 2,000 years ago); The Island was used as a fishing village by Cuban fisherman; and later developed as an American settlement in part as a result of the Homestead Act of 1862. Since incorporation, the Town has developed into an island community consisting of full and part-time residents and is recognized as a popular tourist destination.

The Town provides a comprehensive range of municipal services including general government, public safety, community development, public works, planning, utilities, and parks and recreation.

The Town owns and maintains the water transmission and distribution piping throughout the Town’s service area. The primary water transmission mains are located within the Estero Boulevard Right-of-Way (ROW), which is owned by Lee County. The water distribution system on Fort Myers Beach is supplied by two main water supply lines from Lee County Utilities on the mainland with one connection from San Carlos Blvd at the northwest end of the island and one at the southeast end along Estero Boulevard. From there, 2-, 3-, 8-, 12- and 16-inch lines provide the Town with potable water.

Lee County is in the planning stages for improvements to Estero Boulevard across its entire length (less portions previously improved) and currently is in the design phase for the initial project area, which will extend from Lovers Lane on the east to Crescent Street on the west, a distance of approximately 5,600 linear feet (1.1 miles). The Town is working in conjunction with the County to not only make life easier for residents on Fort Myers Beach by affecting traffic patterns and daily life for only one joint project rather than two separate projects, but to save on rehabilitation costs as well.

The planning area is shown in Figure 1 and includes the entire Town of Fort Myers Beach.
2.2 NEED

The existing distribution system is in need of improvements over the next five years to meet current Standards for Water Works and current FMBPWSI Operation Manual Standards. In 2008, Boyle Engineering Corp., now AECOM, completed a hydraulic model for the Town and suggested recommendations for improvements based on the findings in the model. The modeling efforts identified areas that experienced low pressures throughout the system. The model results were confirmed by customer complaints and through fire hydrant tests conducted by the Fire Control District. Some of these areas are currently being addressed and are under construction. Furthermore, widespread areas were identified as being deficient in fire protection as well. Many distribution lines serving the side streets off of Estero Boulevard within the residential areas were constructed with 6-inch lines connected to fire hydrants. Due to residential demands, these fire hydrants are unable to provide the minimum 1,000 gpm fire flow that was determined necessary by Boyle Engineering in 2008. The installation of a larger and more up to date loop system is necessary to bring the water distribution infrastructure up to fire flow requirements.

The hydraulic study also revealed a need to upgrade the pipes to currently accepted materials. The Town identified existing pipes that were constructed of AC, deteriorating DIP and galvanized steel which are not approved materials. AC pipes are known to be a health hazard while the galvanized pipes have had to be abandoned in some areas due to scaling and deterioration. The 2- and 3-inch galvanized steel pipes are to be replaced with 10-inch PVC and the DI and AC pipes are to be abandoned and replaced with 16-inch PVC.

2.3 SCOPE OF STUDY

The scope of the facilities plan is described below:

1. Inventory of existing water facilities, service area characteristics, and environmental conditions.
2. Establish design needs for the planning period.
3. Identify and evaluate water system alternatives to satisfy the planning year needs.
4. Recommend the most cost-effective, environmentally sound facilities to meet the planning needs.
5. Describe, in detail, the recommended facilities and their cost.
6. Present a schedule of implementation of the recommended facilities.
7. Identify any adverse environmental impacts and propose mitigating measures.
3.0 ENVIRONMENTAL IMPACTS

3.1 DESCRIPTION OF PLANNING AREA

3.1.1 Planning/Service/Project Area

The planning and service area for Ft. Myers Beach is bounded by the extent of the island in which the Town resides, Estero Island. The surface features include mangrove forests, canals, sandy beaches broken up by lagoons and tide pools, and developed land along Estero Boulevard which runs through the central area of the island.

3.1.2 Climate

Due to its proximity to the Gulf Coast, the area is humid with warm temperatures most of the year. According to the Soil Survey of the area provided by the USDA Soil Conservation Service, the average temperature in winter is approximately 65°F with an average summer temperature of 81°F. During brief periods extending from the month of June through the month of August, daytime temperatures often exceed 90°F. Winters are generally short and mild although rare cold spells can drop temperatures to as low as 26°F.

The average annual rainfall is approximately 54 inches. Rainfall is commonly high through June to September. Rainfalls of more than eight inches may occur during hurricane events.

3.1.3 Topography and Drainage

The planning area is characterized by flat terrain and bordered by water on all sides. The average elevations in the service area range from 0 to 5 feet above mean sea level. Soils in the area are classified mostly in the Hydro Soils Groups C and D. These soils have a slow or very slow infiltration rate when thoroughly wet, or a slow rate of water transmission. The D soils have the highest runoff potential. Soils have been mapped using the USDA NRCS Soils Survey for Lee County, FL in Figure 2.

3.1.4 Geology, Soils, and Physiography

The narrow island consists of mostly sandy soils and beaches and are characteristic of the geologic formation in the planning area.
3.1.5 Environmentally Sensitive Areas or Features

3.1.5.1 Wetlands

According to the South Florida Water Management District’s LULC map, the only wetlands that are found throughout the planning area are mangroves and non-vegetated wetlands. These are shown in Figure 3. These areas will be unaffected by the water main installation.

3.1.5.2 Environmentally Sensitive Lands

According to the USDA Natural Resources Conservation Service, there are no prime or unique farmlands in the planning area.

3.1.5.3 Plant and Animal Communities (Endangered Species)

The dominant types of natural vegetation are mangrove trees and coconut palms. There are no rare, endangered or threatened species of vegetation. Raccoons can be found in the planning area and its environs. Amphibian and reptiles include various species of turtles, lizards, and snakes. A wide variety of water and land birds are present in the area. There is one (1) bald eagle located on the island, however it lies outside of the planning area and will be unaffected by the water main installation. There are no rare, endangered or threatened species of animals that would be affected within the project area.

Sea turtle season ranges from May to October on the island. Although sea turtles are not located within the work zone, construction activities will be in the vicinity of their nesting areas along the beach. Any work to be completed at night will be required to use light shields to keep light directed away from the beach as well as be under the supervision and approval of the Town’s biologist. The Contractor will have to go through a sea turtle awareness course from the Town’s resident biologist prior to commencement of construction activities.

3.1.5.4 Archaeological and Historical Sites

The proposed work will upgrade existing utilities within the existing ROW. Therefore, there will be no disturbance of untouched archeological or historical sites.

3.1.6 Flood Plain

Flood zones for the Town are designated on the Flood Insurance Rate Map (FIRM) in Appendix G. The entire island is marked as a flood zone. The areas in which the proposed infrastructure improvements are to be constructed are located in Zones AE and VE. FIRM defines these zones as special flood hazard areas that are subject to inundation by the 1% annual chance flood.
3.2 SOCIO-ECONOMIC CONDITIONS

3.2.1 Population
As previously mentioned, the permanent population is 6,277. The seasonal peak population is approximately 25,000 people for a duration of 5 months from December to April.

Given that Estero Island is built-out, the planning area does not expect to see an increase in population. The facilities to be implemented are to replace the existing infrastructure and will be designed to handle the current flow conditions as dictated by the model provided by the Town.

3.2.2 Land Use and Development
Estero Island is diverse in its land use, ranging from single family homes to hi-rise condominiums and beaches to shopping centers. The Town does not expect any further development. Figure 4 illustrates the varying land uses throughout the planning area.

3.3 WATER DISTRIBUTION SYSTEM

3.3.1 Description of the Existing Water System
The FMBPWS serves the entire island. No other private or public utility provides water in the planning area. Lee County Utilities maintains the storm water and wastewater service within the Estero Boulevard ROW.

The water distribution system is comprised of AC, PVC, DIP, and galvanized steel pipe, three booster pump stations, and two ground storage tanks. Water is provided to the system from the mainland through an interconnect with Lee County Utilities (LCU).

The existing water transmission lines enter the Town at the northwest end of the island near the causeway and at the southeast end near Lover's Key Pass. This southeastern connection us used as an emergency interconnect only. Due to the shape of the island there are two main transmission lines that primarily flow from north to south down the main road, Estero Boulevard. However, there is a portion of the transmission line that flows to the north from the interconnect location. This area has been previously replaced and will not need to be upgraded as a part of this project. As the two AC pipes run from north to south, there are side street connections at each residential block that supply water to the various residential and commercial buildings. The main transmission lines along Estero Boulevard are supplemented by three pump stations and ground storage tanks. One pump station is located downstream of the supply line nearest to the inlet of the water distribution system. As the water enters the island this pump maintains pressure at or above 50 psi.

Additionally, there are north and south pumping stations which maintain pressure at the each end of the island at or above 50 psi. The north pumping station also includes a 0.5-MG Ground Storage Tank while the south pumping station includes a 1.0-MG Ground Storage Tank.
3.3.2 Performance of Existing Water System

The distribution system does not comply with current standards due primarily to materials of construction and lack of fire flow. Currently fire hydrants are connected to 6-inch lines which only supply 75% of the recommended fire flow demand when combined with demands imposed by residential service connections. Furthermore, there are areas with 2- and 3-inch galvanized pipes which are deteriorating and are also undersized for the system.

3.3.3 Water Demand Projection

Given that Estero Island is built-out, the planning area does not expect to see an increase in demands. The facilities to be implemented are to replace the existing infrastructure and will be designed to handle the current flows based on the existing model provided by the Town.

3.3.4 Service Population and Finished Water Projections

As previously mentioned, the service population is expected to remain the same. Therefore, the planning area does not anticipate an increase in future population, land use pattern changes, or economic growth.

3.4 MANAGERIAL CAPATOWN

The Town of Ft. Myers Beach has the sole responsibility and authority to operate and maintain the water system. With proper right-of-way permitting and coordination of work, the Town has the authority to build and/or make improvements to the water system. An inter-local agreement with Lee County and the Town of Bonita Springs are currently in place. The Town currently receives all of its palatable water from Lee County. An interconnect with the Town of Bonita Springs is located at the south end of the island and only in place in case of emergency situations such as a water shortage or hurricane. This interconnect has never needed to be used.

3.4.1 Operation and Maintenance Program

The Utility staff are responsible for maintaining and operating the water system. Repairs/rehabilitation of the water mains due to broken pipes and joints are periodically made on an as needed basis by Town personnel.
4.0 DEVELOPMENT OF ALTERNATIVES

4.1 GENERAL

The existing infrastructure is non-compliant with standards due to its age and size and requires the upgrade of existing facilities to be deemed adequate. The Town is currently built out and does not require any additional infrastructure. Improvements to the existing system are to be implemented to service the Town for the next 30 plus years.

After evaluation of the existing system, it was determined that the distribution main improvements needed include the replacement of the current various size pipe along Estero Boulevard and side streets where improvements have yet to be implemented. The proposed project location is depicted in Figure 5. Much of the distribution piping along the side streets consists of deteriorated small diameter galvanized pipe that will be replaced with 8-inch PVC pipe to satisfy fire flow requirements.

Three (3) installation methods were analyzed to determine the most feasible option to install the main transmission and distribution line along Estero Boulevard based on cost and constructability as well as environmental effectiveness:

1. Pipe Bursting
2. Directional Bore
3. Open Cut

4.2 POTABLE WATER TRANSMISSION SYSTEM IMPROVEMENT OPTIONS

4.2.1 No Action

Under this alternative, the existing practice will continue and the inadequate capacity of the transmission system will remain. The system will not convey the required water to meet the demand and require periodic repair in highly congested areas. This alternative is not viable and hence was rejected.

4.2.2 Pipe Bursting Installation Method

This alternative involves employing trenchless technology to install a new 10- and 16-inch distribution main utilizing the existing mains as a host pipe. The existing AC main will not cause any adverse impacts on the environment. It would, however, require approvals from FDEP and Lee County under multiple permits.

Due to the Town’s concerns with leaving the existing broken AC host pipe in the ground, as well as the amount of service connections that would need to be made in an overly crowded ROW, the pipe bursting installation method was deemed unfeasible. Additionally, it was estimated that installation of the main along Estero Boulevard by the pipe bursting method would cost approximately $20,470,000. In addition, open cut installation of 8-inch PVC distribution mains along the side streets would cost an additional $8,603,000.

4.2.3 Directional Drill Installation Method

This alternative also involves employing trenchless technology to install a new 12- and 18-inch distribution main utilizing by directional drilling. This method would allow the existing roadway to be impacted minimally as well as stay underneath the existing utilities that fill the small ROW corridor.
Tetra Tech made contact with multiple contractors within the area to discuss the possibility of directional drilling. Due to the size of the drills and existing soil conditions within the area, local drillers felt the depth of the pipe would need to be installed at 40 to 50 feet below ground level. This would make tie-ins for service laterals virtually impossible. This was deemed to be the most expensive option. Based on driller’s estimates, installing the improvements along Estero Boulevard by directional drill would cost approximately $28,890,000. Open cut installation of 8-inch PVC distribution mains along the side streets would cost an additional $8,603,000.

4.2.4 Open Cut Installation Method

The last method reviewed for the water main improvements is to install the pipe utilizing traditional open cut methods. Even though this will result in the highest cost of road rehabilitation, as well as maintenance of traffic concerns, this will allow contractors to install the pipe at elevations easy for the Town to maintain as well as utilize the County’s joint road project to mitigate repair costs.

Due to the overcrowded ROW, the pipe along Estero Boulevard will need to be installed under the existing roadway in many areas. To save on costs, the two (2) distribution mains will be installed parallel under one (1) travel lane. This method will take high levels of coordination with the County and residents. Thus, the Town has provided the County with up to date design documents throughout the process and incorporated all input throughout the Phase 1 design. Additionally, the Town has hired a consultant to handle all public relation (PR) concerns and complaints so that residents can stay informed throughout the entire process.

The open cut method is estimated to be the cheapest installation alternative to install the main along Estero Boulevard at approximately $18,100,000, bringing the total infrastructure installation cost to approximately $26,700,000.
5.0 THE SELECTED PLAN

5.1 DESCRIPTION OF PROPOSED FACILITIES

The proposed facilities include the replacement of the existing water transmission and distribution mains along Estero Boulevard with new PVC pipe. In addition, this includes the distribution mains along the majority of the side streets shown previously in Figure 5. As previously discussed, it was determined that open cut installation using PVC pipe is the most cost-effective option. It was also determined to have no adverse environmental impacts within the project limits.

5.1.1 Potable Water Transmission Main

The potable water will be conveyed through the upgraded transmission and distribution mains. The water will have been treated prior to its distribution in the planning area.

5.1.2 Distribution System

The entire planning area is served by transmission main along Estero Boulevard and distribution mains along the side streets, which will consist of 8-, 10- and 16-inch diameter pipes totaling approximately 90,000 linear feet.

5.2 ENVIRONMENTAL IMPACTS OF PROPOSED FACILITIES

The short-term impacts during construction include increased noise levels, increased airborne particulates and surface run-off during rainfall on the site. Control measures will be implemented to minimize these temporary effects. The long-term impacts of the project are beneficial. The Town will have adequate uninterrupted water supply.

The proposed project will not have significant adverse effects on wild and scenic rivers or on flora, fauna, threatened or endangered plant or animal species, prime agricultural lands, wetlands, undisturbed natural areas, or the socio-economic character of the area. The State Historic Preservation Officer has indicated that no archeological, historical or cultural sites are recorded in the area of construction.

5.3 COST TO CONSTRUCT FACILITIES

The details of construction costs for the project are presented in Appendix A. The following tabulation presents the total project cost inclusive of the non-construction items.

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction (including contingency)</td>
<td>$26,700,000</td>
</tr>
<tr>
<td>Engineering and inspection @ 15%</td>
<td>$4,000,000</td>
</tr>
<tr>
<td>Legal, fiscal, and administrative @ 5%</td>
<td>$1,335,000</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$32,035,000</td>
</tr>
</tbody>
</table>

5.4 CONSISTENCY WITH THE COMPREHENSIVE PLAN

The recommendation resulting from this study are consistent with both the Town's and the County's local comprehensive plans.
6.0 IMPLEMENTATION AND COMPLIANCE

6.1 PUBLIC HEARING/DEDICATED REVENUE HEARING

The implementation of the facilities will be done on a phase-by-phase basis. A public hearing/dedicated revenue hearing will be held for each phase once the construction dates are set and the contractor has been established.

6.2 REGULATORY AGENCY REVIEW

To qualify for a subsidized loan from the SRF, various governmental agencies must be satisfied with the way that Fort Myers Beach’s water system problem is to be solved. Copies of the facilities plan adopted by the Town Commission are to be sent to the following government agencies for review and comments.

1. Florida Department of Environmental Protection
2. Florida Department of Health
3. Southwest Florida Water Management District
4. U.S. Environmental Protection Agency

6.3 FINANCIAL PLANNING

The Department of Environmental Protection’s State Revolving Fund is expected to be the financing source for the project. A rate study will be conducted by the Town to determine the amount of increase to the end users water bills to cover the cost of the project.

6.4 IMPLEMENTATION

Once FDEP and Lee County have approved requests for constructing the proposed facilities, the Town of Ft. Myers Beach will have the responsibility and authority to implement the recommended proposed facilities.

6.5 IMPLEMENTATION SCHEDULE

Construction of the first segment of the facility implementation is expected to begin in May to June of 2016 and continue for the duration of nine (9) months. The remaining portions of the transmission and distribution main replacement project will begin once funding is secured.

6.6 COMPLIANCE

1. The treated water from the selected alternative will be in compliance with the FDEP drinking water standards.
2. The selected alternatives will meet the reliability requirements as per chapter 62-555, F.A.C.
3. The environmental aspects of the proposed facilities are satisfactory.
4. The recommended facilities are consistent with both Ft. Myers Beach and Lee County’s comprehensive facilities plans.
Town of Fort Myers Beach Water Main Improvements Project

Opinion of Probable Construction Cost

<table>
<thead>
<tr>
<th>Item #</th>
<th>Item Description</th>
<th>Unit</th>
<th>Quantity</th>
<th>Per Unit</th>
<th>Extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Conditions/Mobilization/Insurance</td>
<td>LS</td>
<td>1</td>
<td>$2,000,000</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>2</td>
<td>8-inch PVC C-900 DR-14 and Appurtenances</td>
<td>LF</td>
<td>27,000</td>
<td>$140</td>
<td>$3,780,000</td>
</tr>
<tr>
<td>3</td>
<td>10-inch PVC C-900 DR-14 and Appurtenances</td>
<td>LF</td>
<td>31,500</td>
<td>$155</td>
<td>$4,882,500</td>
</tr>
<tr>
<td>4</td>
<td>16-inch PVC C-900 DR-14 and Appurtenances</td>
<td>LF</td>
<td>31,500</td>
<td>$215</td>
<td>$6,772,500</td>
</tr>
<tr>
<td>5</td>
<td>Connection to Existing Water Main</td>
<td>EA</td>
<td>60</td>
<td>$5,000</td>
<td>$300,000</td>
</tr>
<tr>
<td>6</td>
<td>Transfer Service Connection (with Corp. Stop)¹</td>
<td>EA</td>
<td>120</td>
<td>$2,000</td>
<td>$240,000</td>
</tr>
<tr>
<td>7</td>
<td>Water Service (Short) with Meter</td>
<td>EA</td>
<td>420</td>
<td>$850</td>
<td>$357,000</td>
</tr>
<tr>
<td>8</td>
<td>Water Service (Long) with Meter</td>
<td>EA</td>
<td>420</td>
<td>$1,700</td>
<td>$714,000</td>
</tr>
<tr>
<td>9</td>
<td>Grout and Abandon Existing 2 inch Water Main</td>
<td>LF</td>
<td>27,000</td>
<td>$4</td>
<td>$108,000</td>
</tr>
<tr>
<td>10</td>
<td>Grout and Abandon Existing 3 inch Water Main</td>
<td>LF</td>
<td>3,000</td>
<td>$7</td>
<td>$21,000</td>
</tr>
<tr>
<td>11</td>
<td>Grout and Abandon Existing 8 inch Water Main</td>
<td>LF</td>
<td>34,000</td>
<td>$10</td>
<td>$340,000</td>
</tr>
<tr>
<td>12</td>
<td>Grout and Abandon Existing 12 inch Water Main</td>
<td>LF</td>
<td>20,000</td>
<td>$12</td>
<td>$240,000</td>
</tr>
<tr>
<td>13</td>
<td>Grout and Abandon Existing 18 inch Water Main</td>
<td>LF</td>
<td>23,000</td>
<td>$15</td>
<td>$345,000</td>
</tr>
<tr>
<td>14</td>
<td>Air Release Valve Assembly</td>
<td>EA</td>
<td>15</td>
<td>$1,500</td>
<td>$22,500</td>
</tr>
<tr>
<td>15</td>
<td>Fire Hydrant Assembly</td>
<td>EA</td>
<td>150</td>
<td>$4,500</td>
<td>$675,000</td>
</tr>
<tr>
<td>16</td>
<td>Permanent Bacteriological Sampling Point</td>
<td>EA</td>
<td>40</td>
<td>$1,500</td>
<td>$60,000</td>
</tr>
<tr>
<td>17</td>
<td>Driveway Restoration and Repair</td>
<td>EA</td>
<td>800</td>
<td>$1,500</td>
<td>$1,200,000</td>
</tr>
<tr>
<td>18</td>
<td>Pavement Replacement and Restoration</td>
<td>yd²</td>
<td>36,500</td>
<td>$25.00</td>
<td>$912,500</td>
</tr>
<tr>
<td>19</td>
<td>Traffic Control</td>
<td>LS</td>
<td>1</td>
<td>$250,000</td>
<td>$250,000</td>
</tr>
</tbody>
</table>

Subtotal $23,220,000

Contingency (15%) $3,483,000

Total $26,703,000

1 Actual number of connections to be confirmed at a later date

2 Assume two active construction crews.
APPENDIX B SUMMARY OF PUBLIC/DEDICATED REVENUE HEARING
(TO BE INCLUDED AT A LATER DATE)
APPENDIX C CAPITAL FINANCING PLAN (TO BE COMPLETED BY TOWN)
CAPITAL FINANCING PLAN WORKSHEETS

<table>
<thead>
<tr>
<th>Project Sponsoring Agency (DWSRF Project Sponsor)</th>
<th>Capital Financing Plan Contact, Title, and Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorized Representative and Title</td>
<td>Street Address or Other Mailing Address</td>
</tr>
<tr>
<td>Street Address or Other Mailing Address</td>
<td>City, State, and Zip Code</td>
</tr>
<tr>
<td>City, State, and Zip Code</td>
<td></td>
</tr>
</tbody>
</table>

The Department needs to know about the financial capabilities of potential Drinking Water State Revolving Fund (DWSRF) loan applicants. Therefore, a financial capability demonstration (and certification) is required well before the evaluation of the actual loan application. Please see Rule 62.552(5) in Chapter 62.552, F.A.C. for further details.

It is expected that the revenues to be dedicated to repaying the loan will be generated either from water and sewer utility operations or from water utility operations alone. If the source of revenues will not be from such enterprises, this set of worksheets alone will not satisfy the Department's needs. (Please contact the Department for further guidance if dedicated revenues will be generated externally to such utilities.)

This form solicits information for the next five years. Ordinarily, the five-year time frame will cover the period of interest to the Department, but it will be necessary to provide additional yearly information until the reported data includes at least one full year of DWSRF project operation and one annual DWSRF repayment to the Department. Accordingly, attachments may be made to these worksheets. Please use the format established herein when preparing attachments. The worksheets have been developed to identify the minimum information needed. The completed worksheets should be used in disclosing DWSRF project financing to the public during the required dedicated revenue hearing. The worksheets can serve to identify the impacts of the SRF project on residential users and how the project fits into the project sponsor's overall capital improvement program for the water and sewer utility (or water utility, as appropriate). Supplemental capital financing documentation may be submitted with these worksheets and may be presented at the required dedicated revenue hearing.
A. Household median annual income, average size, number in the utility service area, and population to be served. (Population to be served is determined by the number of households multiplied by the household size. This data is to be consistent with facilities planning projections.) If the data vary by district or zone, report the data according to district or zone on an attachment.

Note: Indicate the actual fiscal years for Year 1 - Year 5 wherever they appear in the worksheets.

<table>
<thead>
<tr>
<th></th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fiscal Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Household income ($/year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Household size (people/household)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Number of households</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Serviced population (people)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. The revenues being dedicated to repayment of the DWSRF loan are:

Water user fees

C. What projects (including the DWSRF project) will be financed from the operation of the utility generating the revenues to be dedicated to repaying the DWSRF loan? Total annual cost is the sum of annualized capital costs plus the annual operation, maintenance, and replacement (O&M & R) costs. Note that wastewater facilities information is to be identified only if the dedicated revenues will be generated from operations of a water and sewer utility.

<table>
<thead>
<tr>
<th>Facilities Description</th>
<th>Construction Start Dates (Month/Year)</th>
<th>Capital Costs ($)</th>
<th>Annualized Capital Costs ($)</th>
<th>Annual Cost to Operate, Maintain, and Replace ($)</th>
<th>Total Annual Costs ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Water supply well</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Water treatment plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Sites and easements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Water transmission systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Water storage facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Other (explain)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Wastewater facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Identify which of the above water facilities are to be financed with the DWSRF loan and combine (as appropriate) the associated costs:

<table>
<thead>
<tr>
<th>Description</th>
<th>Total Capital Cost</th>
<th>Total Annual Capital Costs</th>
<th>Total Annual Costs for O/M&R</th>
<th>Total Annual Cost</th>
</tr>
</thead>
</table>
D. Identify the DWSRF loan amount scheduled, or to be scheduled, on the project priority list, the interest rate established for the quarter preceding the submittal of the CFP, annual debt service, and expected pledged revenue coverage. Note that DWSRF repayments begin six months after the estimated construction completion. (It is recognized that the information provided is best estimates only.)

DWSRF Loan Amount $ ________________ interest rate __________ % annual debt service $ ________________
loan repayment reserve $ ________________ pledged revenue coverage factor ________________ semi-annual repayments begin ________________ (Date).

E. Identify other anticipated debt, which will be repaid from operations of the utility providing the dedicated revenues. N/A

<table>
<thead>
<tr>
<th>Description/Fiscal Year</th>
<th>Debt Amount($)</th>
<th>Annual Interest Rate(%)</th>
<th>Revenue Coverage Rate(%)</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F. What is the existing debt for the utility providing the DWSRF dedicated revenues?

<table>
<thead>
<tr>
<th>Description/Fiscal Year</th>
<th>Current Debt Amount($)</th>
<th>Annual Interest Rate(%)</th>
<th>Revenue Coverage Rate(%)</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
G. Identify the projected annual expenses for the utility providing DWSRF dedicated revenues

1. Existing facilities

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>FY ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM&R ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debt Service ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other – describe</td>
<td>($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. DWSRF proposed project(s)

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>FY ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM&R ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debt Service ($)</td>
<td>(includes 15% coverage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other – describe</td>
<td>($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Non-DWSRF proposed project(s) (if any)

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>FY ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM&R ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debt Service ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other – describe</td>
<td>($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. All existing and planned facilities (sum of items 1, 2, & 3, above)

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>FY ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM&R ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debt Service ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other – describe</td>
<td>($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
H. Identify the projected annual utility revenues assuming all the planned projects are constructed according to the schedule reported in Item C, above. Compare revenues to expenses identified in Sub-item G 4, above, and explain (on an attachment) how any net loss is covered to keep the utility financially self-sufficient in each deficit year.

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>FY ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-operating ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other – describe</td>
<td>(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I. Identify the projected annual expenses for the water system, assuming all planned water facilities will be constructed. These entries may be skipped if a water utility alone is providing the DWSRF dedicated revenues since the information already will have been presented in Subitem G 4, above.

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>FY ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM&R ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debt Service($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other – describe</td>
<td>(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J. Identify the projected annual revenues for the water system, assuming all planned water facilities will be constructed. Compare revenues to expenses identified in Item I, above, and explain (on an attachment) how any net loss is covered to keep the water system financially self-sufficient in each deficit year. These entries may be skipped if a water utility alone is providing the DWSRF dedicated revenues since the information already will have been presented in Item H, above.

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>FY ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-operating ($)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other – describe</td>
<td>(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
K. Identify the average water system charges, fees, and assessments. If the utility service area encompasses districts or zones which will be subject to different service charges, fees, etc. attributable to the DWSRF project, it will be necessary to provide the relevant data below separately for the district(s) or zone(s). Difference in charges, fees, etc. should be explained on the attachment used to present the water system data.

<table>
<thead>
<tr>
<th>Description</th>
<th>FY ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Water System data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Total estimated annual water system costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Non-residential share of total annual water system costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Residential share of total annual water system costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Number of households</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Average residential system charge (per month/customer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Average connection fee per residential unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Average impact fee per residential unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Average special assessment per residential unit (identify basis below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Average capacity charge per residential unit (identify basis below)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Other (describe)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. DWSRF project capital cost per household (from Item C divide by Item K-1, d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Describe basis for special assessments, such as cost per lot length

Describe basis for capacity charge, such as cost per volume per day

L. Which, if any, of the following activities must be undertaken to implement the DWSRF project?

1. Acquire privately held land? YES _____ NO _____
2. Acquire land held by another public water system entity? YES _____ NO _____
3. Enter into inter-local or inter-project sponsoring agency's agreements? YES _____ NO _____
4. Hold an election or public referendum? YES _____ NO _____
5. Comply with special assessment or similar procedural requirements? YES _____ NO _____

M. Attach a certification by the project sponsor’s chief financial officer or by an official authorized to commit to the SRF funding that the project sponsor has the financial capability to ensure adequate construction, operation, and maintenance of the water system.
Certification

I, ____________________________, certify that I have reviewed the information included in the above capital financing plan worksheets, and to the best of my knowledge, this information accurately reflects the financial capability of ____________________________. I further certify that ____________________________ has the financial capability to ensure adequate construction, operation, and maintenance of the water system. This certification is made with full consideration given to other planned projects that will be financed from the revenues to be dedicated to repaying the Drinking Water State Revolving Fund loan.

______________________________ ______________________________
Signature Date
FINANCIAL BURDEN RATIO

The financial burden ratio is required to determine eligibility for construction grant funding. An example is shown below. The Capital Financing Plan should be completed as if the project was being funded with a 100% loan. Use the results in the calculations below. If it is determined that the sponsor is eligible for a construction grant the Capital Financing Plan should be completed again using the appropriate loan percentage as determined below (15% or 35%).

Actual Median Household Income (MHI):
Source: $ $

Actual Annual User Charge:
Source: $ $

Debt Service:
Source: $ $

Project Operating Revenues:
Source: $ $

FINANCIAL BURDEN RATIO (FBR) – User Charge Method

(Debt Service/Operating Revenues)*(User Charge/MHI) =

FINANCIAL BURDEN RATIO (FBR) – EDU Method

Monthly Demand Data:
Residential Accounts: Flow: kgal
Commercial Accounts: Flow: kgal
Totals: kgal

EDU Calculation = (Total Flow)*(Res Accts/Res Flow) =

FBR = (Debt Service/EDU)/(MHI) =

<table>
<thead>
<tr>
<th>Median Household Income</th>
<th>FBR Criteria</th>
<th>Grant Funding (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 27,483</td>
<td>>= 1%</td>
<td>65%</td>
</tr>
<tr>
<td>>= 21,986</td>
<td>>= 1%</td>
<td>65%</td>
</tr>
<tr>
<td>< 21,986</td>
<td>< 0.5%</td>
<td>65%</td>
</tr>
<tr>
<td>< 21,986</td>
<td>>= 0.5%</td>
<td>85%</td>
</tr>
</tbody>
</table>

State Median Household Income: $ (State MHI)*80%: $
Ft. Myers Beach MHI: $ (source:)
APPENDIX D USER RATE SYSTEM AND DRAFT RATE ORDINANCE
(TO BE COMPLETED AT LATER DATE)
State of Florida
Department of Environmental Protection
__________ District

SANITARY SURVEY REPORT

Plant Name ___________________________ County ___________ PWS ID # ___________
Plant Location ___________________________ Phone ________
Owner Name ___________________________ Phone ________
Owner Address ___________________________ Title ___________ Phone ________
Contact Person ___________________________ Last Survey Date _____ Last C.I. Date ___________

PWS TYPE & CLASS
☒ Community
☐ Non-transient Non-community
☐ Non-Community

COMET: SITE ID ___________ PROJECT ID ________

PWS STATUS
☐ Approved system with approval number & date

☐ Unapproved system

SERVICE AREA CHARACTERISTICS

Food Service: ☐ Yes ☒ No ☐ N/A

OPERATION & MAINTENANCE
Certified Operator: ☒ Yes ☐ No ☐ Not required
Operator(s) & Certification Class-Number

☐ O & M Log: ☐ Yes ☐ No ☐ Not required
Operator Visitation Frequency
Hrs/day: Required ________ Actual ________
Days/wk: Required ________ Actual ________
Non-consecutive Days? ☐ Yes ☐ No ☐ N/A
MORs submitted regularly? ☐ Yes ☐ No ☐ N/A
Data missing from MORs? ☐ No ☐ Yes ☐ N/A

Number of Service Connections ___________
Population Served ________ Basis ________
Average Day (from MORs) ___________ gpd
Max. Day (from MORs) ___________ gpd
Max-day Design Capacity ___________ gpd
Comments __
RAW WATER SOURCE
☐ GROUND; Number of Wells ___________________
☐ SURFACE/UDI; Source ___________________
☐ PURCHASED from PWS ID # ___________________
☐ Emergency Water Source ___________________
☐ Emergency Water Capacity ___________________

AUXILIARY POWER SOURCE
☐ Yes ☐ None ☐ Not Required
Source ___________________
Capacity of Standby (kW) ___________________
Switchover: ☐ Automatic ☐ Manual
Standby Plan: ☐ Yes ☐ No
Hrs Operated Under Load ___________________
What equipment does it operate?
☐ Well pumps ___________________
☐ High Service Pumps ___________________
☐ Treatment Equipment ___________________
Satisfy 1/2 max-day demand? ☐ Yes ☐ No ☐ Unk
Comments ___________________

TREATMENT PROCESSES IN USE
What additional treatment is needed?
For control of what deficiencies?

DISTRIBUTION SYSTEM
Flow Measuring Device Not Required
Meter Size & Type ___________________
Backflow Prevention Devices: ☐ Yes ☐ No
Cross-connections ___________________
Written Cross-connection Control Program: N/A
Coliform Sampling Plan: ☐ Yes ☐ No ☐ N/A
Comments ___________________
GROUND WATER SOURCE

<table>
<thead>
<tr>
<th>Well Number</th>
<th>Year Drilled</th>
<th>Depth Drilled</th>
<th>Drilling Method</th>
<th>Type of Grout</th>
<th>Static Water Level</th>
<th>Pumping Water Level</th>
<th>Design Well Yield</th>
<th>Test Yield</th>
<th>Actual Yield (if different than rated capacity)</th>
<th>Strainer</th>
<th>Length (outside casing)</th>
<th>Diameter (outside casing)</th>
<th>Material (outside casing)</th>
<th>Well Contamination History</th>
<th>Is inundation of well possible?</th>
<th>6’ X 6’ X 4” Concrete Pad</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET BACKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sepic Tank</td>
<td>Reuse Water</td>
<td>WW Plumbing</td>
<td>Other Sanitary Hazard</td>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Manufacturer Name</td>
<td>Model Number</td>
<td>Rated Capacity (gpm)</td>
<td>Motor Horsepower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Well casing 12” above grade? | Well Casing Sanitary Seal | Raw Water Sampling Tap | Above Ground Check Valve | Fence/Housing | Well Vent Protection |

COMMENTS

__

__
CHLORINATION (Disinfection)

<table>
<thead>
<tr>
<th>Make</th>
<th>Capacity</th>
<th>gpd</th>
</tr>
</thead>
</table>

Chlorine Feed Rate

| Avg. Amount of Cl₂ gas used | N/A |

Chlorine Residuals:

- Plant ________
- Remote ________

Remote tap location

| DPD Test Kit: | On-site | With operator | None | Not Used Daily |

Injection Points

- Booster Pump Info
- Comments

STORAGE FACILITIES

(G) Ground (H) Hydropneumatic (E) Elevated
(B) Bladder (C) Clearwell

<table>
<thead>
<tr>
<th>Tank Type/Number</th>
<th>Capacity (gal)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity Drain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>By-pass Piping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Gauge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sight Glass or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level Indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fittings for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sight Glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protected Openings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRV/ARV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On/Off Pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access Padlocked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height to Bottom of Elevated Tank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height to Max. Water Level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments

<table>
<thead>
<tr>
<th>Chlorine Gas Use Requirements</th>
<th>YES</th>
<th>NO</th>
<th>Comments</th>
</tr>
</thead>
</table>

- Dual System
- Auto-switchover
- Alarms:
 - Loss of Cl₂ capability
 - Loss of Cl₂ residual
 - Cl₂ leak detection
- Scale
- Chained Cylinders
- Reserve Supply
- Adequate Air-pak
- Sign of Leaks
- Fresh Ammonia
- Ventilation
- Room Lighting
- Warning Signs
- Repair Kits
- Fitted Wrench
- Housing/Protection

AERATION (Gases, Fe, & Mn Removal)

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
</tr>
</thead>
</table>

Aerator Condition

Bloodworm Presence

Visible Algae Growth

Protective Screen Condition

Comments

HIGH SERVICE PUMPS

<table>
<thead>
<tr>
<th>Pump Number</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>Make</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>Capacity (gpm)</td>
<td></td>
</tr>
<tr>
<td>Motor HP</td>
<td></td>
</tr>
<tr>
<td>Date Installed</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
</tbody>
</table>

Comments

- Pump Number
- Type
- Make
- Model
- Capacity (gpm)
- Motor HP
- Date Installed
- Maintenance

COMPLIANCE MONITORING
NON-COMMUNITY PUBLIC WATER SYSTEMS

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>PWS Screen</th>
<th># Samples Required & Sample Location</th>
<th>Frequency</th>
<th>Sample Date</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiological (Bacte)</td>
<td>024</td>
<td>1 from each well & 2 distribution samples</td>
<td>monthly (>1000 persons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>quarterly (< 1000 persons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate & Nitrite (as N)</td>
<td>030</td>
<td>1 sample from POE*</td>
<td>annually</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MONITORING VIOLATIONS

MCL VIOLATIONS

* POE = Point of Entry (Samples shall be taken at each entry point to the distribution system that is representative of each source after treatment.)

DEFICIENCIES:

Inspector ________________________ Title ________________________ Date __________

Approved by ______________________ Title ________________________ Date __________